

Mark Scheme (Results) Summer 2010

AEA

AEA Mathematics (9801)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024466 All the material in this publication is copyright © Edexcel Ltd 2010

June 2010 9801 Advanced Extension Award Mathematics Mark Scheme

Q.	Scheme	Marks	Notes
1(a)	$3x + 16 = 9 + x + 1 + 6\sqrt{x + 1}$	M1	Initial squaring -both sides
	$3 + x = 3\sqrt{x+1} \tag{o.e.}$	A1	Correct collecting of terms
	$9+6x+x^{2} = 9(x+1)$ $x^{2}-3x = 0$ $x = 0 \text{ or } 3$ $\underline{\text{or}} y = \sqrt{x+1} \to 3\text{TQ in } y$ $\underline{\text{or}} (y-2)(y-1) = 0$	M1 A1 B1 (5)	2 nd squaring o.e. Both values (S+ for checking values)
(b)	$\frac{1}{2}\log_3 x = \log_3 \sqrt{x}$	B1	For use of $n\log x$ rule
	$\log_3(x-7) - \log_3 \sqrt{x} = \log_3 \frac{x-7}{\sqrt{x}}$	M1	For reducing xs to a single log
	So $2x-14=3\sqrt{x}$ (o.e. all x terms on same line)	M1A1	M1 for getting out of logs A1 for correct equation
	$2\left(\sqrt{x}\right)^2 - 3\sqrt{x} - 14 = 0$	M1	Attempt to solve suitable 3TQ in x or \sqrt{x}
	$\left(2\sqrt{x}-7\right)\left(\sqrt{x}+2\right)=0$		Either solution for \sqrt{x} or
	$\sqrt{x} = \frac{7}{2}$ or -2	A1	x. Must be rational <i>a/b</i>
	$x = \frac{49}{4}$	A1 (7)	49/4 oe only (S+ for clear reason for rejecting $x = 4$)
		[12]	

Q.	Scheme	Marks	Notes
2(a)	$q = \frac{p}{2}(2a + (p-1)d)$ and $p = \frac{q}{2}(2a + (q-1)d)$	M1 A1	Attempt one sum formula Both correct expressions
	$2\left(\frac{q}{p} - \frac{p}{q}\right) = d\left(p - 1 - q + 1\right)$	dM1	Eliminate a. Dep on 1 st M1 Must use 2 indep. eqns
		A1	Correct elimination of <i>a</i>
	$d = \frac{2(q^2 - p^2)}{pq(p-q)};$ $d = \frac{-2(p+q)}{pq}$	A1 (5)	Correct simplified $d =$
	,		Substitute for <i>d</i> in a correct
(b)	$2a = \frac{2q}{q} + \frac{(p-1)2(q+p)}{q}; \qquad a = \frac{q^2(q-1) - p^2(p-1)}{q}$	M1	sum formula i.e. eqn in <i>a</i> only
	$2a = \frac{2q}{p} + \frac{(p-1)2(q+p)}{pq}; \qquad a = \frac{q^2(q-1) - p^2(p-1)}{pq(q-p)}$ $\frac{q^2 + qp + p^2 - p - q}{pq} \text{ or } \frac{q^2 + (p-1)(q+p)}{pq} \text{ or } \frac{p^2 + (q-1)(q+p)}{pq}$	dM1	Rearrange to $a = .$ Dep M1
	pq or pq or pq	A1 (3)	Correct single fraction with denom = pq
(c)	$S_{p+q} = \frac{p+q}{2} \left(\frac{2q}{p} + \frac{(p-1)2(q+p)}{pq} + \frac{-2(p+q)}{pq} (p+q-1) \right)$	M1	Attempt sum formula with $n = (p+q)$ and ft their a and d
	$= \frac{p+q}{2} \left[\frac{2(q^2+qp+p^2-p-q)}{pq} - \frac{2(p+q-1)(p+q)}{pq} \right]$	M1	Attempt to simplify- denominator = pq or $2pq$
	$\frac{p+q}{pq}\left[-pq\right] = -\left[p+q\right]$	A1 (3)	Alfor $-(p+q)$
	pq	[11]	(S+ for concise simplification/factorising)

Marks for Style Clarity and Presentation (up to max of 7)

S1 or S2

For a fully correct (or nearly fully correct) solution that is neat and succinct in question 1 to question 7 **T1**

For a good attempt at the whole paper. Progress in all questions.

Pick best 3 S1/S2 scores to form total.

Q.	Scheme	Marks	Notes
3(a)	2x + 2yy' + fy + fxy' = 0	M1	Correct attempt to diff'n y^2 or xy
		A1	y or xy All fully correct and = 0
	$\therefore y' = \frac{2x + fy}{-[2y + fx]}$	dM1	Isolate y' Dep on 1 st M1
	$\therefore y' = \frac{2x + fy}{-[2y + fx]}$ At (α, β) gradient, $m = \frac{2\alpha + f\beta}{-[2\beta + f\alpha]}$ (o.e.)	A1 (4)	Sub α and β
(b)	$m = 1$ gives: $2\alpha + f\beta = -2\beta - f\alpha$	M1	Sub $m = 1$ and form linear equation in α and β .
	$\therefore (\alpha + \beta)(f + 2) = 0 \Rightarrow \alpha = -\beta (\text{or } f = -2) \qquad (*)$	A1cso	$(S+ for using f \neq -2)$
	From curve: $\alpha^2 + \alpha^2 - f\alpha^2 - g^2 = 0$ (o.e.)	M1	Sub $(\alpha = -\beta)$ into equation of curve
	$\therefore \alpha^2 (2 - f) = g^2 \Rightarrow \alpha^2 = \frac{g^2}{2 - f} \text{ and so } \alpha(\text{or } \beta) = \frac{\pm g}{\sqrt{2 - f}} \text{ (*)}$	A1cso (4)	Simplify to answer. $(S+ \text{ for considering } f < 2)$
(c)	$(x-y)^2 = g^2$ or $x-y = \pm g$	M1	Attempt to complete the square, allow \pm Or shows $m = 1$
	Line $y = x + g$ sketched Line $y = x - g$ sketched	A1 A1 (3) [11]	Sketches should show <i>y</i> intercept or eq'n at least.
4(a)	(-5) (0)	B1	Vectors AC or AF.
	$\overrightarrow{AC} = \begin{pmatrix} -5\\10\\0 \end{pmatrix}, \overrightarrow{AF} = \begin{pmatrix} 0\\10\\20 \end{pmatrix}; \left \overrightarrow{AC} \right = \sqrt{125}, \left \overrightarrow{AF} \right = \sqrt{500}$	B1	Condone ± correct mods
	$\overrightarrow{AC} \bullet \overrightarrow{AF} = 100 \implies \cos \angle CAF = \frac{100}{\sqrt{125}\sqrt{500}}, = \frac{2}{5} \text{ or } 0.4$	M1 A1 (4)	Complete method for $\pm \cos(CAF)$
(b)	$\overrightarrow{OX} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -5 \\ 10 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 - 5t \\ 10t \\ 0 \end{pmatrix} \underbrace{\text{or}}_{0} \begin{pmatrix} a \\ 10 - 2a \\ 0 \end{pmatrix}; \overrightarrow{FX} = \begin{pmatrix} -5t \\ 10t - 10 \\ -20 \end{pmatrix}$	M1;	Attempt equation for AC or variable OX
	$ \begin{vmatrix} OX = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + t \begin{vmatrix} 10 \\ 0 \end{vmatrix} = \begin{bmatrix} 10t \\ 0 \end{bmatrix} \underbrace{\text{or}}_{0} \begin{bmatrix} 10 - 2a \\ 0 \end{bmatrix}; FX = \begin{bmatrix} 10t - 10 \\ -20 \end{bmatrix} $	<u>M1</u>	Attempt <i>FX</i> . Must be in terms of <u>one</u> unknown
	$\overrightarrow{FX} \bullet \overrightarrow{AC} = 0 \implies 25t + 100t - 100 + 0 = 0, \qquad [t = 0.8]$	M1	Correct use of • to get linear eqn in t
	$\overrightarrow{OX} = \begin{pmatrix} 1 \\ 8 \\ 0 \end{pmatrix}; \overrightarrow{FX} = \begin{pmatrix} -4 \\ -2 \\ -20 \end{pmatrix} \text{ and } \left \overrightarrow{FX} \right = \sqrt{420}$	A1 A1	t = 0.8 o.e. Correct vector OX
	$\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} -20 \end{pmatrix}$	$\frac{M1}{A1}$ (7)	Attempt $\pm FX$ $\sqrt{420}$ o.e.
	$\left \overrightarrow{FX} \right = \sqrt{420} \text{ earns } \underline{\text{M1}} \underline{\text{M1}} \underline{\text{A1}} ; \overrightarrow{OX} \text{ earns } \underline{\text{M1M1A1A1}}$	<u>A.</u> (/)	
(c)	(5) (5) (-2.5)	B1	B1 for each vector
	$l_1: (\mathbf{r} =) \lambda \begin{pmatrix} 5 \\ 5 \\ 10 \end{pmatrix}$ and $l_2: (\mathbf{r} =) \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -2.5 \\ 10 \\ 20 \end{pmatrix}$	B1	equation
			Clear attempt to solve leading to $\lambda = \text{ or } \mu =$
	Solving: $5\lambda = 5 - 2.5\mu$ and $5\lambda = 10\mu$ (o.e.) $\lambda = 0.8$, $\mu = 0.4$	A1	Either Accept position vector
	Intersection at the point $(4, 4, 8)$	A1 (5) [16]	(S+ for clear attempt to
		[-0]	check intersection)

Q.	Scheme	Marks	Notes
5(a)	$x = 1 + u^{-1} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = -\frac{1}{u^2}$	B1	Correct dx/du (o.e.)
	au		
	$\therefore I = \int \frac{1}{u^{-1} \sqrt{u^{-2} + 2u^{-1}}} \cdot \left(-\frac{1}{u^2} \right) du$	M1	Attempt to get I in u only
	$I = -\int \frac{\mathrm{d}u}{\sqrt{1 + 2u}} \tag{o.e}$	A1	Correct simplified expression in <i>u</i> only
	$=-(1+2u)^{\frac{1}{2}}\left(+c\right)$	M1 A1	Attempt to int' their <i>I</i> Correct integration
	Uses $u = \frac{1}{x-1}$ to give $I = -(1 + \frac{2}{x-1})^{\frac{1}{2}} + c$, $I = -\left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} + c$	M1 A1cso	Sub back in xs Including $+ c$
	$($ $)^{\frac{1}{2}}$ $($ $)^{\frac{1}{2}}$	(7)	including + c
(b)	$= -\left(\frac{\sec \beta + 1}{\sec \beta - 1}\right)^{\frac{1}{2}} + \left(\frac{\sec \alpha + 1}{\sec \alpha - 1}\right)^{\frac{1}{2}}$	M1	Use of part (a)
	$= -\left(\frac{1+\cos\beta}{1-\cos\beta}\right)^{\frac{1}{2}} + \left(\frac{1+\cos\alpha}{1-\cos\alpha}\right)^{\frac{1}{2}}$	M1	Multiply by cosx
	$= -\left(\frac{2\cos^2(\frac{\beta}{2})}{2\sin^2(\frac{\beta}{2})}\right)^{\frac{1}{2}} + \left(\frac{2\cos^2(\frac{\alpha}{2})}{2\sin^2(\frac{\alpha}{2})}\right)^{\frac{1}{2}} $ ["2" is needed]	M1	Use of half angle formulae
		M1	Correct removal of $\sqrt{\ }$.
	$= \cot\left(\frac{\alpha}{2}\right) - \cot\left(\frac{\beta}{2}\right) \tag{*}$	A1cso (5) [12]	
6(a)	$A = x^{2} + y^{2} = x^{2} + (1 - x^{4})^{\frac{1}{2}}$	B1	A as function of x only
	$\therefore \frac{dA}{dx} = 2x - (2x^3)(1 - x^4)^{-\frac{1}{2}}$	M1	For some correct diff'n. More than just 2x
	$\frac{dA}{dx} = 0$, $x = 0$ or $x^2 = (1 - x^4)^{\frac{1}{2}}$	A1	For $x^2 = (1 - x^4)^{\frac{1}{2}}$
	dx i.e. $x^2 = y^2 \Rightarrow x = \pm y$; and $x^4 = y^4 = \frac{1}{2}$, so $x^2 + y^2 = \sqrt{2}$	B1 M1; B1	For $x = 0$ \implies by min = 1] M1 for reaching $y = \pm x$
	<u> </u>	WII, DI	B1 for max = $\sqrt{2}$
(b)	So minimum is 1 [and maximum is $\sqrt{2}$]	B1 (7)	For min = 1
(b)			
		B1	Circle, centre $(0,0)$ $r=1$
		B1	Other curve
(c)	$x^2 + y^2 = \sqrt{2}$	B1 (3) [10]	(S+ for some explanation
ALT(a)	Let $x = r\cos\theta$ and $y = r\sin\theta$ then $r^4(\cos^4\theta + \sin^4\theta) = 1$	B1	
(4)	·		
	$r^4 = \frac{1}{\cos^4 \theta + \sin^4 \theta} = \frac{1}{1 - \frac{1}{2}\sin^2 2\theta}$; So $1 < r^2 < 2$	M1A1; B1B1	
	Max value when $\theta = \frac{\pi}{4} \text{ so } x = y$	M1A1	
OR	$A^{2} = (x^{2} + y^{2})^{2} = 1 + 2x^{2}y^{2} = 1 + 2x^{2}\sqrt{(1 - x^{4})}$	1 st B1	Then differentiate as before
OR	$A^{2}-1=2x^{2}y^{2} \rightarrow (A^{2}-1)^{2}=4x^{4}(1-x^{4});=4(\frac{1}{4}-(\frac{1}{2}-x^{4})^{2})$	B1:M1A1	By completing the square

Q.	Scheme	Marks	Notes
7(a)	$f(x) = [1 + (\cos x \cos \frac{\pi}{4} - \sin x \sin \frac{\pi}{4})][1 + (\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4})] M1$		Use of $sin(A + B)$ etc
	$= [1 + \frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x)][1 + \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x]$	B1	$\sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$
	$= (1 + \frac{1}{\sqrt{2}}\cos x)^2 - (\frac{1}{\sqrt{2}}\sin x)^2 \mathbf{or} = 1 + \frac{2}{\sqrt{2}}\cos x + \frac{1}{2}\cos^2 x - \frac{1}{2}\sin^2 x$	M1	Multiply out and remove sinxcosx terms
	$= 1 + \frac{2}{\sqrt{2}}\cos x + \frac{1}{2}\cos^2 x - \frac{1}{2}(1 - \cos^2 x)$ So $f(x) = \frac{1}{2} + \frac{2}{\sqrt{2}}\cos x + \cos^2 x = (\frac{1}{\sqrt{2}} + \cos x)^2$ (*)	M1 A1cso	Eqn in cosx only
(b)	Range: $0 \le f(x) \le (\frac{1}{\sqrt{2}} + 1)^2$ or equivalent e.g. $\frac{3}{2} + \frac{2}{\sqrt{2}}$	(5) M1 A1 (2)	M1 $f \ge 0$ or $f \le (\frac{1}{\sqrt{2}} + 1)^2$ A1 both [M1A0 for <]
(c)	$\cos x = 1$ gives maxima at $(0, \frac{3}{2} + \sqrt{2})$ and at $(2\pi, \frac{3}{2} + \sqrt{2})$	B1 B1ft	If y co-ord is wrong allow 2 nd B1ft
	Minima when $(\frac{1}{\sqrt{2}} + \cos x) = 0 \Rightarrow \cos x = -\frac{1}{\sqrt{2}}$ so at $x = \frac{3\pi}{4}$ or $\frac{5\pi}{4}$	M1 A1	M1 for $y = 0$ at $\cos x =$ A1 for x co-ords
	$f'(x) = -2\sin x (\frac{1}{\sqrt{2}} + \cos x) = 0 \text{ at } x = \pi ,$ so at $(\pi, \frac{3}{2} - \sqrt{2})$ there is a (local) maximum	M1 A1 (6)	For f'(x)=0 and $x = \pi$ A1for max point
(d)	$y = 2$ meets $y = f(x)$ so $(\frac{1}{\sqrt{2}} + \cos x)^2 = 2 \Rightarrow \cos x = \frac{\sqrt{2}}{2}$ $\therefore x = \frac{\pi}{4}$ or $\frac{7\pi}{4}$	M1 A1	Form and solve correct eqn Both
	Area = $\int (2 - f(x)) dx$ [or correct rect - integral o.e.]	M1	Correct strategy
	$= \int \left(1 - \sqrt{2}\cos x - \frac{1}{2}\cos 2x\right) dx$	M1	All terms of integral in
	$= \left[x - \sqrt{2} \sin x - \frac{1}{4} \sin 2x \right]$	dM1A1	suitable form M1 for some correct int' Dep on previous M A1 for all correct
	$= \left(\frac{7\pi}{4} + \sqrt{2} \times \frac{1}{\sqrt{2}} + \frac{1}{4} \times 1\right) - \left(\frac{\pi}{4} - \sqrt{2} \times \frac{1}{\sqrt{2}} - \frac{1}{4}\right)$	dM1	Use of their correct limits. Dep on 1 st M1
	$=\frac{3\pi}{2}+\frac{5}{2}$	A1 (8) [21]	NB Rectangle = 3π
ALT	(a) $f(x) = 1 + \sqrt{2}\cos(x + \frac{\pi}{4} - \frac{\pi}{4}) + \frac{1}{2}\sin(2x + \frac{\pi}{2})$	1 st M1B1	
	$=1+\sqrt{2}\cos x+\tfrac{1}{2}\cos 2x$	2 nd M1	Remove $\sin(2x + \frac{\pi}{2})$
	$= 1 + \sqrt{2}\cos x - \frac{1}{2} + \cos^2 x$	3 rd M1	Then as in scheme
ALT	(d) $\int \left(\frac{1}{\sqrt{2}} + \cos x\right)^2 dx = \int \frac{1}{2} + \sqrt{2} \cos x + \frac{1}{2} + \frac{1}{2} \cos 2x dx$	3 rd M1	All terms in form to int'
	$= \frac{1}{2}x + \sqrt{2}\sin x + \frac{1}{4}\sin 2x + \frac{1}{2}x$	4 th M1 2 nd A1	Will score 2 nd M1 when they try to subtract from area of rectangle

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA024466 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH